Chimie Organique

Série $n^{\circ} 1$

Exercice 1:

Un alcane inconnu composé de $83,3 \%$ de carbone.
1- Déterminer sa formule brute.
2- Quelle est sa masse molaire?
3- Donner les formules semi-développées de tous les isomères et leur nomenclature.

Exercice 2:

Un produit inconnu composé uniquement de $\mathrm{C}, \mathrm{H}, \mathrm{N}$, et S a une masse molaire de $101 \mathrm{~g} / \mathrm{mol}$, l'analyse quantitative donne:

$$
\mathrm{C} \%=47,52 \mathrm{H} \%=6,93 \mathrm{~N} \%=13,86 \mathrm{~S} \%=31.68
$$

1. Sachant les masses atomiques $\mathrm{C}=12, \mathrm{H}=1, \mathrm{~N}=14, \mathrm{~S}=32$, donner la formule globale de cet inconnu.
2- Calculer le nombre d'insaturations de la formule trouvée.

Exercice 3:

Un acide carboxylique saturé contient $53,3 \%$ d'oxygène en masse.
1- Calculer la masse molaire de l'acide
2- Quel est le nombre d'atome de carbone de la molécule.
3- Trouver la formule brute de cet acide.
4- Ecrire la formule semi- développée de cet acide.

Exercice 4:

La molécule d'un composé de masse molaire $42,0 \mathrm{~g} / \mathrm{mol}$ a la composition centésimale massique suivante: $\mathrm{C}: 85,7 \%$ et $\mathrm{H}: 14,3 \%$

1- Déterminer la formule brute de ce composé.
2- A quelle famille appartient-il? Pourquoi?
3- Donner une formule semi-développée et son nom.

Exercice 5:

Soit un gaz inconnu de volume $\mathbf{V}_{\mathrm{A}}=1,60 \mathrm{l}$ et de masse $\mathbf{m}_{\mathrm{A}}=3,712 \mathrm{~g}$.
Dans les conditions de température et de pression, le volume molaire du gaz est $\mathbf{V}_{\mathrm{m}}=25,0$ $1 / \mathrm{mol}$.

1- Déterminer la masse molaire M_{Λ} de ce gaz.
2- Ce gaz est un alcane non cyclique. Déterminer la formule brute de cet alcane.
3- Rechercher les formules semi-développées des différents isomères et les nommer.
a
Serie $n=1$

Exo1 $=$ Determiner la formule brute:
O_{n} a un alcane donc: $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.

$$
\begin{aligned}
& \frac{\mu}{100}=\frac{n \times \mu(\mathbb{C})}{100} \\
& \mu=12 n+(2 n+1) \times 1=14 n+2 \\
& \frac{\mu}{100}=\frac{12 n}{\% c} \\
& (14 n+2) \times 83,3=12 n \times 100 \\
& \Rightarrow n=5 .
\end{aligned}
$$

Donc la formule bvute de cet alcane est $C_{r} \mathrm{H}_{12}$.

$$
\begin{aligned}
& \left.C_{x H y H_{3}}^{\%} \frac{x H / C)}{\% c}=\frac{y H_{i}(n)}{\% i 1}=\frac{3(v)}{\%} \right\rvert\, \\
& \left.M_{\in(n}^{1 / 2} H_{2 n+2}\right)=12 n+2 n+2=14 n+2
\end{aligned}
$$

2. Sa masse molaine: $M=14 n+2$

$$
\begin{aligned}
& =14 \times 5+2 \\
& \left|M=72 \mathrm{~g} \cdot \mathrm{md}^{-1}\right|
\end{aligned}
$$

3.- Les formules semi devloppées

$$
\begin{equation*}
\mathrm{CH}_{3}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \tag{0}
\end{equation*}
$$

Pentan

$$
\mathrm{CH}_{3}-\underset{\substack{\mathrm{CH} \\ \mathrm{CH} \\ \mathrm{CH}_{2}}}{ } \mathrm{CH}_{2}-\mathrm{CH}_{3}(\mathrm{i} \quad 2 \text {-mithylbutione }
$$

(3) 2,2 -3umé thayl propan

Ex02:

$$
\begin{aligned}
& C_{n} H_{y} S_{t} N_{v} \\
& M\left(C_{n} H_{y} S_{t} N_{v}\right)=101 \mathrm{~g} / \mathrm{md} \\
& \frac{\mu}{100}=\frac{12 x}{47,52} \Rightarrow x=4 \\
& \frac{\mu}{100}=\frac{1 \cdot y}{6,93} \Rightarrow y=7 \\
& \frac{\mu}{100}=\frac{34 t}{31,68} \Rightarrow t=1 \\
& \frac{\mu}{100}=\frac{14 v}{13,86} \Rightarrow V=1 \\
&
\end{aligned}
$$

2. Le inbre d insativation:

$$
\begin{aligned}
& n=\frac{2 n+2-y+v-w}{2} \\
& n=\frac{2 \times 4+2-7+1}{2} \quad
\end{aligned} \quad n=2
$$

Exoly:
La formule brute du compose' $\mathrm{C}_{n} H y$
On a \quad h $=42 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \Rightarrow \frac{\mu}{100}=\frac{x \times \mu(C)}{Y . C}=\frac{Y M(H)}{Y H} \\
& \Rightarrow x=3 \quad \text { et } y=6
\end{aligned}
$$

2. $C_{3} H_{6}$ appartiént aklighempiple dee atcines has forme $C_{n} H_{2 n}$ 3. La formile semiderloppée de $C_{3} H_{6}$ et 3

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} \quad \text { propen }
$$

Exo5. A-On a $\quad n=\frac{m}{m}$

$$
\Rightarrow \frac{V_{A}}{V_{m}}=\frac{m_{A}}{M_{A}} \Rightarrow M_{A}=\frac{m_{A} \cdot V_{m}}{V_{A}}=58 \mathrm{~g} \cdot / \mathrm{mol}
$$

2. Ce gaz est un alcane donc il s'écuit sous forme $C_{n} H_{2 n+2}$. donc $\mu=12 n+2 n+2=58 \%$

$$
14 n+2=58 \quad \Rightarrow \quad n=\frac{16}{14} \Rightarrow n=4
$$

donc $\mathrm{C}_{4} \mathrm{H}_{10}$.
3. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}$, Butane

$$
\begin{array}{cc}
\mathrm{CH}_{3}-\mathrm{CH}_{1} \mathrm{CH}_{3} & 2 \text {-methigepiopan. } \\
\mathrm{CH}_{3} & -
\end{array}
$$

$\leftrightarrow \square^{-}$

et encore plus..

